Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics

//Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics

Bioelectronics for healthcare that monitor the health information on users in real time have stepped into the limelight as crucial electronic devices for the future due to the increased demand for “point-of-care” testing, which is defined as medical diagnostic testing at the time and place of patient care. In contrast to traditional diagnostic testing, which is generally conducted at medical institutions with diagnostic instruments and requires a long time for specimen analysis, point-of-care testing can be accomplished personally at the bedside, and health information on users can be monitored in real time. Advances in materials science and device technology have enabled next-generation electronics, including flexible, stretchable, and biocompatible electronic devices, bringing the commercialisation of personalised healthcare devices increasingly within reach, e.g., wearable bioelectronics attached to the body that monitor the health information on users in real time. Additionally, the monitoring of harmful factors in the environment surrounding the user, such as air pollutants, chemicals, and ultraviolet light, is also important for health maintenance because such factors can have short- and long-term detrimental effects on the human body. The precise detection of chemical species from both the human body and the surrounding environment is crucial for personal health care because of the abundant information that such factors can provide when determining a person’s health condition. In this respect, sensor applications based on an organic-transistor platform has various advantages, including signal amplification, molecular design capability, low cost, and mechanical robustness (e.g., flexibility and stretchability). This Account covers recent progress in organic transistor-based chemical sensors that detect various chemical species in the human body or the surrounding environment, which will be the core elements of wearable electronic devices. There has been considerable effort to develop high-performance chemical sensors based on organic-transistor platforms through material design and device engineering. Various experimental approaches have been adopted to develop chemical sensors with high sensitivity, selectivity, and stability, including the synthesis of new materials, structural engineering, surface functionalisation, and device engineering. In this Account, we first provide a brief introduction to the operating principles of transistor-based chemical sensors. Then we summarise the progress in the fabrication of transistor-based chemical sensors that detect chemical species from the human body (e.g., molecules in sweat, saliva, urine, tears, etc.). The authors then highlight examples of chemical sensors for detecting harmful chemicals in the environment surrounding the user (e.g., nitrogen oxides, sulfur dioxide, volatile organic compounds, liquid-phase organic solvents, and heavy metal ions). Finally, this Account was concluded with a perspective on the wearable bioelectronics, especially focusing on organic electronic materials and devices.

Authors: Lee MY, Lee HR, Park CH, Han SG, Oh JH. ; Full Source: Accounts of Chemical Research. 2018 Nov 7. doi: 10.1021/acs.accounts.8b00465. [Epub ahead of print]